Well-posedness and Symmetries of Strongly Coupled Network Equations

نویسنده

  • STEFANO CARDANOBILE
چکیده

We consider a class of evolution equations taking place on the edges of a finite network and allow for feedback effects between different, possibly non-adjacent edges. This generalizes the setting that is common in the literature, where the only considered interactions take place at the boundary, i. e., in the nodes of the network. We discuss well-posedness of the associated initial value problem as well as contractivity and positivity properties of its solutions. Finally, we discuss qualitative properties that can be formulated in terms of invariance of linear subspaces of the state space, i. e., of symmetries of the associated physical system. Applications to a neurobiological model as well as to a system of linear Schrödinger equations on a quantum graph are discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence and uniqueness of the solution for a general system of operator equations in $b-$metric spaces endowed with a graph

The purpose of this paper is to present some coupled fixed point results on a metric space endowed with two $b$-metrics. We shall apply a fixed point theorem for an appropriate operator on the Cartesian product of the given spaces endowed with directed graphs. Data dependence, well-posedness and Ulam-Hyers stability are also studied. The results obtained here will be applied to prove the existe...

متن کامل

COUPLED FIXED POINT THEOREMS FOR RATIONAL TYPE CONTRACTIONS VIA C-CLASS FUNCTIONS

In this paper, by using C-class functions, we will present a coupled …xed problem in b-metric space for the single-valued operators satisfying a generalized contraction condition. First part of the paper is related to some …xed point theorems, the second part presents the uniqueness and existence for the solution of the coupled …xed point problem and in the third part we...

متن کامل

Qualitative Properties of Coupled Parabolic Systems of Evolution Equations

We apply functional analytical and variational methods in order to study well-posedness and qualitative properties of evolution equations on product Hilbert spaces. To this aim we introduce an algebraic formalism for matrices of sesquilinear mappings. We apply our results to parabolic problems of different nature: a coupled diffusive system arising in neurobiology, a strongly damped wave equati...

متن کامل

Reduction of Differential Equations by Lie Algebra of Symmetries

The paper is devoted to an application of Lie group theory to differential equations. The basic infinitesimal method for calculating symmetry group is presented, and used to determine general symmetry group of some differential equations. We include a number of important applications including integration of ordinary differential equations and finding some solutions of partial differential equa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008